Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Host Microbe ; 29(11): 1693-1708.e7, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637781

RESUMO

Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.


Assuntos
Clostridiales/fisiologia , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Clostridium/fisiologia , Simbiose , Aminoácidos/metabolismo , Animais , Arginina/metabolismo , Butiratos/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Clostridiales/crescimento & desenvolvimento , Clostridioides difficile/genética , Clostridioides difficile/fisiologia , Clostridium/crescimento & desenvolvimento , Fermentação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Vida Livre de Germes , Camundongos , Índice de Gravidade de Doença , Biologia de Sistemas , Virulência
2.
Gut Microbes ; 13(1): 1987783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34693878

RESUMO

Oscillospira is a class of organism that often appears in high-throughput sequencing data but has not been purely cultured and is widely present in the animal and human intestines. There is a strong association between variation in Oscillospira abundance and obesity, leanness, and human health. In addition, a growing body of studies has shown that Oscillospira is also implicated in other diseases, such as gallstones and chronic constipation, and has shown some correlation with the positive or negative changes in its course. Sequencing data combined with metabolic profiling indicate that Oscillospira is likely to be a genus capable of producing short-chain fatty acids (SCFAs) such as butyrate, which is an important reference indicator for screening "next-generation probiotics ". Considering the positive effects of Oscillospira in some specific diseases, such as obesity-related metabolic diseases, it has already been characterized as one of the next-generation probiotic candidates and therefore has great potential for development and application in the future food, health care, and biopharmaceutical products.


Assuntos
Clostridiales/fisiologia , Probióticos/química , Animais , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Humanos , Probióticos/farmacologia
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548394

RESUMO

Microorganisms have coevolved diverse mechanisms to impair host defenses. A major one, superantigens, can result in devastating effects on the immune system. While all known superantigens induce vast immune cell proliferation and come from opportunistic pathogens, recently, proteins with similar broad specificity to antibody variable (V) domain families were identified in a commensal microbiota. These proteins, identified in the human commensal Ruminococcus gnavus, are called immunoglobulin-binding protein (Ibp) A and B and have been shown to activate B cells in vitro expressing either human VH3 or murine VH5/6/7. Here, we provide molecular and functional studies revealing the basis of this Ibp/immunoglobulin (Ig) interaction. The crystal structure and biochemical assays of a truncated IbpA construct in complex with mouse VH5 antigen-binding fragment (Fab) shows a binding of Ig heavy chain framework residues to the Ibp Domain D and the C-terminal heavy chain binding domain (HCBD). We used targeted mutagenesis of contact residues and affinity measurements and performed studies of the Fab-IbpA complex to determine the stoichiometry between Ibp and VH domains, suggesting Ibp may serve to cluster full-length IgA antibodies in vivo. Furthermore, in vitro stimulation experiments indicate that binding of the Ibp HCBD alone is sufficient to activate responsive murine B cell receptors. The presence of these proteins in a commensal microbe suggest that binding a broad repertoire of immunoglobulins, particularly in the gut/microbiome environment, may provide an important function in the maintenance of host/microbiome homeostasis contrasting with the pathogenic role of structurally homologous superantigens expressed by pathogens.


Assuntos
Anticorpos Monoclonais/metabolismo , Linfócitos B/metabolismo , Clostridiales/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Superantígenos/metabolismo , Animais , Anticorpos Monoclonais/química , Linfócitos B/imunologia , Sítios de Ligação , Clostridiales/crescimento & desenvolvimento , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Região Variável de Imunoglobulina/química , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/química , Superantígenos/química
4.
World J Microbiol Biotechnol ; 37(8): 144, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351499

RESUMO

Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores-the so called "germinate to eradicate" strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.


Assuntos
Bacillales/crescimento & desenvolvimento , Clostridiales/crescimento & desenvolvimento , Desinfecção/métodos , Esporos Bacterianos/crescimento & desenvolvimento , Bacillales/efeitos dos fármacos , Clostridiales/efeitos da radiação , Desinfecção/instrumentação , Temperatura Alta , Humanos , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta
5.
Appl Environ Microbiol ; 87(18): e0067821, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34232740

RESUMO

Mercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in food webs as monomethylmercury (MeHg). The production of MeHg is driven by anaerobic and Hg redox cycling pathways, such as Hg reduction, which control the availability of Hg to methylators. Anaerobes play an important role in Hg reduction in methylation hot spots, yet their contributions remain underappreciated due to how challenging these pathways are to study in the absence of dedicated genetic targets and low levels of Hg0 in anoxic environments. In this study, we used Hg stable isotope fractionation to explore Hg reduction during anoxygenic photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. We show that cells preferentially reduce lighter Hg isotopes in both metabolisms, leading to mass-dependent fractionation, but mass-independent fractionation commonly induced by UV-visible light is absent. Due to the variability associated with replicate experiments, we could not discern whether dedicated physiological processes drive Hg reduction during photosynthesis and fermentation. However, we demonstrate that fractionation is affected by the interplay between pathways controlling Hg recruitment, accessibility, and availability alongside metabolic redox reactions. The combined contributions of these processes lead to isotopic enrichment during anoxygenic photosynthesis that is in between the values reported for anaerobic respiratory microbial Hg reduction and abiotic photoreduction. Isotope enrichment during fermentation is closer to what has been observed in aerobic bacteria that reduce Hg through dedicated detoxification pathways. Our work suggests that similar controls likely underpin diverse microbe-mediated Hg transformations that affect Hg's fate in oxic and anoxic habitats. IMPORTANCE Anaerobic and photosynthetic bacteria that reduce mercury affect mercury delivery to microbes in methylation sites that drive bioaccumulation in food webs. Anaerobic mercury reduction pathways remain underappreciated in the current view of the global mercury cycle because they are challenging to study, bearing no dedicated genetic targets to establish physiological mechanisms. In this study, we used stable isotopes to characterize the physiological processes that control mercury reduction during photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. The sensitivity of isotope analyses highlighted the subtle contribution of mercury uptake to the isotope signature associated with anaerobic mercury reduction. When considered alongside the isotope signatures associated with microbial pathways for which genetic determinants have been identified, our findings underscore the narrow range of isotope enrichment that is characteristic of microbial mercury transformations. This suggests that there are common atomic-level controls for biological mercury transformations across a broad range of geochemical conditions.


Assuntos
Clostridiales/metabolismo , Poluentes Ambientais/metabolismo , Mercúrio/metabolismo , Aerobiose , Anaerobiose , Fracionamento Químico , Clostridiales/crescimento & desenvolvimento , Fermentação , Isótopos de Mercúrio , Metilação , Fotossíntese
6.
Nutrients ; 13(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199239

RESUMO

We aimed to differentiate gut microbiota composition of overweight/obese and lean subjects and to determine its association with clinical variables and dietary intake. A cross-sectional study was performed with 96 overweight/obese subjects and 32 lean subjects. Anthropometric parameters were positively associated with Collinsella aerofaciens, Dorea formicigenerans and Dorea longicatena, which had higher abundance the overweight/obese subjects. Moreover, different genera of Lachnospiraceae were negatively associated with body fat, LDL and total cholesterol. Saturated fatty acids (SFAs) were negatively associated with the genus Intestinimonas, a biomarker of the overweight/obese group, whereas SFAs were positively associated with Roseburia, a biomarker for the lean group. In conclusion, Dorea formicigenerans, Dorea longicatena and Collinsella aerofaciens could be considered obesity biomarkers, Lachnospiraceae is associated with lipid cardiovascular risk factors. SFAs exhibited opposite association profiles with butyrate-producing bacteria depending on the BMI. Thus, the relationship between diet and microbiota opens new tools for the management of obesity.


Assuntos
Bactérias/classificação , Dieta , Microbioma Gastrointestinal , Obesidade/microbiologia , Sobrepeso/microbiologia , Magreza/microbiologia , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Adulto , Bactérias/isolamento & purificação , Índice de Massa Corporal , Clostridiales/crescimento & desenvolvimento , Clostridiales/isolamento & purificação , Estudos Transversais , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Ingestão de Alimentos , Ingestão de Energia , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Potássio/administração & dosagem
7.
Eur J Cancer ; 151: 25-34, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962358

RESUMO

OBJECTIVE: The gut microbiome plays an important role in systemic inflammation and immune response. Microbes can translocate and reside in tumour niches. However, it is unclear how the intratumour microbiome affects immunity in human cancer. The purpose of this study was to investigate the association between intratumour bacteria, infiltrating CD8+ T cells and patient survival in cutaneous melanoma. METHODS: Using The Cancer Genome Altas's cutaneous melanoma RNA sequencing data, levels of intratumour bacteria and infiltrating CD8+ T cells were determined. Correlation between intratumour bacteria and infiltrating CD8+ T cells or chemokine gene expression and survival analysis of infiltrating CD8+ T cells and Lachnoclostridium in cutaneous melanoma were performed. RESULTS: Patients with low levels of CD8+ T cells have significantly shorter survival than those with high levels. The adjusted hazard ratio was 1.57 (low vs high) (95% confidence interval: 1.17-2.10, p = 0.002). Intratumour bacteria of the Lachnoclostridium genus ranked top in a positive association with infiltrating CD8+ T cells (correlation coefficient = 0.38, p = 9.4 × 10-14), followed by Gelidibacter (0.31, p = 1.13 × 10-9), Flammeovirga (0.29, p = 1.96 × 10-8) and Acinetobacter (0.28, p = 8.94 × 10-8). These intratumour genera positively correlated with chemokine CXCL9, CXCL10 and CCL5 expression. The high Lachnoclostridium load significantly reduced the mortality risk (p = 0.0003). However, no statistically significant correlation was observed between intratumour Lachnoclostridium abundance and the levels of either NK, B or CD4+ T cells. CONCLUSION: Intratumour-residing gut microbiota could modulate chemokine levels and affect CD8+ T-cell infiltration, consequently influencing patient survival in cutaneous melanoma. Manipulating the intratumour gut microbiome may benefit patient outcomes for those undergoing immunotherapy.


Assuntos
Bactérias/crescimento & desenvolvimento , Translocação Bacteriana , Microbioma Gastrointestinal , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/microbiologia , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carga Bacteriana , Quimiocinas/genética , Quimiocinas/metabolismo , Clostridiales/crescimento & desenvolvimento , Citotoxicidade Imunológica , Feminino , Humanos , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma/metabolismo , Melanoma/mortalidade , Pessoa de Meia-Idade , Prognóstico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/mortalidade , Linfócitos T Citotóxicos/metabolismo , Adulto Jovem
8.
PLoS One ; 16(4): e0250423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914799

RESUMO

The tight association between malnutrition and gut microbiota (GM) dysbiosis enables microbiota-targeting intervention to be a promising strategy. Thus, we used a malnourished pig model to investigate the host response and GM alterations under different diet supplementation strategies. Pigs at age of 4 weeks were fed with pure maize diet to induce malnutrition symptoms, and followed by continuous feeding with maize (Maize, n = 8) or re-feeding using either corn-soy-blend (CSB+, n = 10) or millet-soy-blend based (MSB+, n = 10) supplementary food for 3 weeks. Meanwhile, 8 pigs were fed on a standard formulated ration as control (Ref). The effect of nutritional supplementation was assessed by the growth status, blood chemistry, gastrointestinal pathology, mucosal microbiota composition and colon production of short-chain fatty acids. Compared with purely maize-fed pigs, both CSB+ and MSB+ elevated the concentrations of total protein and globulin in blood. These pigs still showed most malnutrition symptoms after the food intervention period. MSB+ had superior influence on the GM development, exhibiting better performance in both structural and functional aspects. MSB+ pigs were colonized by less Proteobacteria but more Bacteroidetes, Firmicutes and Lachnospira spp. Pearson's correlation analysis indicated a strong correlation between the abundance of mucosal e.g., Faecalibacterium and Lachnospira spp. and body weight, crown-rump length and total serum protein. In conclusion, the malnutrition symptoms were accompanied by an aberrant GM, and millet-based nutritional supplementation showed promising potentials to restore the reduced GM diversity implicated in pig malnutrition.


Assuntos
Ração Animal/análise , Dieta/métodos , Disbiose/dietoterapia , Microbioma Gastrointestinal/fisiologia , Desnutrição/dietoterapia , Milhetes/química , Animais , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Biodiversidade , Proteínas Sanguíneas/agonistas , Proteínas Sanguíneas/metabolismo , Peso Corporal , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Clostridiales/isolamento & purificação , Disbiose/microbiologia , Disbiose/patologia , Faecalibacterium/genética , Faecalibacterium/crescimento & desenvolvimento , Faecalibacterium/isolamento & purificação , Ácidos Graxos Voláteis/biossíntese , Feminino , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Desnutrição/microbiologia , Desnutrição/patologia , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Suínos , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/isolamento & purificação , Zea mays/química
9.
Nutr Metab Cardiovasc Dis ; 31(5): 1454-1466, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33810955

RESUMO

BACKGROUND AND AIMS: Host-microbiota interactions involving metabolic pathways have been linked to the pathogenesis of atherosclerotic disease and type 2 diabetes. As stable coronary artery disease (SCAD) patients combined with type 2 diabetes have significantly increased risk for cardiac event, we focused on elucidating the role of microbiota affecting cardiometabolic disease development. METHODS AND RESULTS: We used multi-omics analyses (metagenomics and metabolomics) of fecal and serum samples from a prospective cohort including stable coronary artery disease combined with diabetes mellitus (SCAD + T2DM, n = 38), SCAD (n = 71), and healthy control (HC, n = 55). We linked microbiome features to disease severity in a three-pronged association analysis and identified prognostic bacterial biomarkers. We identified that bacterial and metabolic signatures varied significantly between SCAD and SCAD + T2DM groups. SCAD + T2DM individuals were characterized by increased levels of aromatic amino acids and carbohydrates, which correlate with a gut microbiome with enriched biosynthetic potential. Our study also addressed how metformin may confound gut dysbiosis and increase the potential for nitrogen metabolism. In addition, we found that specific bacterial taxa Ruminococcus torques [HR: 2.363 (08-4.56), P = 0.03] was predictive of cardiac survival outcomes. CONCLUSION: Overall, our study identified relationships between features of the gut microbiota (GM) and circulating metabolites, providing a new direction for future studies aiming to understand the host-GM interplay in atherosclerotic cardiovascular pathogenesis.


Assuntos
Bactérias/metabolismo , Doença da Artéria Coronariana/microbiologia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Idoso , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biomarcadores/sangue , Estudos de Casos e Controles , Clostridiales/crescimento & desenvolvimento , Clostridiales/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Disbiose , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Metabolômica , Metagenômica , Metformina/uso terapêutico , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
10.
J Biol Chem ; 296: 100552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744293

RESUMO

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridiales/metabolismo , Proteínas de Bactérias/genética , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Celobiose/metabolismo , Celulose/metabolismo , Proteínas Cromossômicas não Histona/genética , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento
11.
PLoS One ; 16(3): e0247135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661900

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes play important roles in CO2 fixation and redox balancing in photosynthetic bacteria. In the present study, the kefir yeast Kluyveromyces marxianus 4G5 was used as host for the transformation of form I and form II RubisCO genes derived from the nonsulfur purple bacterium Rhodopseudomonas palustris using the Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO) method. Hungateiclostridium thermocellum ATCC 27405, a well-known bacterium for its efficient solubilization of recalcitrant lignocellulosic biomass, was used to degrade Napier grass and rice straw to generate soluble fermentable sugars. The resultant Napier grass and rice straw broths were used as growth media for the engineered K. marxianus. In the dual microbial system, H. thermocellum degraded the biomass feedstock to produce both C5 and C6 sugars. As the bacterium only used hexose sugars, the remaining pentose sugars could be metabolized by K. marxianus to produce ethanol. The transformant RubisCO K. marxianus strains grew well in hydrolyzed Napier grass and rice straw broths and produced bioethanol more efficiently than the wild type. Therefore, these engineered K. marxianus strains could be used with H. thermocellum in a bacterium-yeast coculture system for ethanol production directly from biomass feedstocks.


Assuntos
Proteínas de Bactérias , Clostridiales/crescimento & desenvolvimento , Etanol/metabolismo , Kluyveromyces , Microrganismos Geneticamente Modificados , Rodopseudomonas/genética , Ribulose-Bifosfato Carboxilase , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Rodopseudomonas/enzimologia , Ribulose-Bifosfato Carboxilase/biossíntese , Ribulose-Bifosfato Carboxilase/genética
12.
J Sci Food Agric ; 101(13): 5721-5729, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33650140

RESUMO

BACKGROUND: Lactulose was one of the earliest prebiotics to be identified. To assess the potential risk of large intakes of lactulose to the intestinal microbiota, mice were fed a diet containing lactulose (0%, 5% and 15%, w/w) for 2 weeks and the changes in the fecal microbiota were evaluated by 16S rRNA high-throughput sequencing. RESULTS: Lactulose intervention decreased the α-diversity of the fecal microbiota in both low-dose and high-dose groups. The relative abundance of Actinobacteria was significantly increased, while that of Bacteroidetes was significantly decreased after lactulose intervention. At the genus level, the relative abundance of Bifidobacterium belonging to Actinobacteria was significantly increased, and that of Alistipes belonging to Bacteroidetes was decreased in both low-dose and high-dose groups. The relative abundance of Blautia was significantly increased from 0.2% to 7.9% in the high-dose group and one strain of Blautia producta was isolated from the mice feces. However, the strain could not utilize lactulose. CONCLUSION: Overall, the microbial diversity was decreased after lactulose treatment, with significant increases in the relative abundance of Bifidobacterium. We also provide a strategy to increase the relative abundance of Blautia in the intestine by lactulose feeding at high doses, although the mechanism is not revealed. This will help us understand the prebiotic effect of lactulose on the host health. © 2021 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Bifidobacterium/crescimento & desenvolvimento , Clostridiales/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal , Lactulose/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Clostridiales/metabolismo , DNA Bacteriano/genética , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prebióticos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652686

RESUMO

Periodic fasting (PF) is an increasingly popular approach that assists in the management of metabolic and inflammatory diseases as well as in preventing mechanisms involved in aging. However, little is known about the effects of fasting on gut microbiota and its impact on the epigenetic regulation of metabolically relevant enzymes, especially sirtuins (SIRTs). We analyzed the effect of periodic fasting on the human gut microbiota, SIRTs expression, and mitochondrial content in 51 males and females. The participants fasted under supervision for five consecutive days following the Buchinger fasting guidelines. Ketogenesis, selected mRNAs, miRNAs, mitochondrial (mt) DNA, and gut composition were analyzed before and after PF. PF triggered a significant switch in metabolism, as indicated by the increase in ß-hydroxybutyrate (BHB) and pyruvate dehydrogenase kinase isoform 4 (PDK4) expression in the capillary blood. MtDNA, SIRT1, SIRT3, and miRlet7b-5p expression in blood cells were elevated, whereas SIRT6 and miR125b-5p were not affected. Following fasting, gut microbiota diversity increased, and a statistically significant correlation between SIRT1 gene expression and the abundance of Prevotella and Lactobacillus was detected. The abundance of longevity related Christensenella species increased after fasting and inversely correlated with age as well as body mass index (BMI). Thus, this represents the first study that showing that fasting not only changes the composition of the gut microbiota, making it more diverse, but also affects SIRT expression in humans.


Assuntos
Clostridiales/crescimento & desenvolvimento , Jejum/sangue , Microbioma Gastrointestinal , Regulação Enzimológica da Expressão Gênica , Sirtuínas/biossíntese , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Medicine (Baltimore) ; 100(7): e24845, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33607855

RESUMO

ABSTRACT: Despite the establishment of the links between ulcerative colitis (UC) and depression, between UC and gut microbiota, few correlations between depression and gut microbiota have yet been demonstrated especially in ulcerative colitis patients. The objective of our study was therefore to determine whether the comorbidity of depressive disorder in ulcerative colitis patients correlate with alterations in the gut microbiota and to identify the specific microbiota signatures associated with depression.Between March 2017 and February 2018, 31 healthy volunteers, 31 UC patients without depression, and 31 UC patients with depression from Longhua Hospital were enrolled. Clinical data and fecal samples were collected for each patient. Fecal bacteria were identified using 16 s rRNA sequencing. We compared microbial composition among the 3 groups using bioinformatic analysis.Patients with UC with depression had higher disease severity (P < .05). The UC without depression group had moderate reduction of microbial abundance and uniformity compared to the control group. The UC with depression group had the lowest microbial abundance. With regard to the vital bacteria in the microbiota-gut-brain axis, patients with UC and depression had the lowest abundance of Firmicutes, Clostridia, and Clostridiales but the highest abundance of Proteobacteria, Gammaproteobacteria, and Bacilli.The presence of depression in UC patients presented significant differences in the composition of gut microbiota compared with UC patients without depression, with increased abundance of Firmicutes and reduced abundance of Proteobacteria.


Assuntos
Colite Ulcerativa/microbiologia , Depressão/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Estudos de Casos e Controles , Clostridiales/crescimento & desenvolvimento , Colite Ulcerativa/psicologia , Comorbidade , Biologia Computacional/métodos , Depressão/complicações , Feminino , Firmicutes/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Proteobactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença
15.
Int J Biol Macromol ; 176: 404-412, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571595

RESUMO

Here, we compared the effects of different physical forms of arabinoxylan (AX) - a microsphere of cross-linked arabinoxylan (CAX) in a Ca2+-alginate matrix (MC) and physical mixture of AX and alginate (PM) on gut microbiota and development of obesity in C57BL/6J mice. Supplementation of MC in high fat (HF) diet to mice for 10 weeks significantly reversed the body weight gain induced by the HF diet, along with less fat accumulation in both livers and the epididymal adipose than the PM group. Microbiome analysis showed that MC significantly altered the gut microbiota composition with a noticeable increase of butyrogenic bacteria of Lachnospiraceae. The butyrate produced by MC fermentation and the increased abundance of Lachnospiraceae might be the underlying mechanism of the anti-obesity effect of MC. The results indicated that the physical forms of dietary fiber are closely associated with its health benefits, and MC might be served as a new functional food ingredient to prevent obesity.


Assuntos
Alginatos , Cálcio , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade , Xilanos , Alginatos/química , Alginatos/farmacologia , Animais , Cálcio/química , Cálcio/farmacologia , Clostridiales/classificação , Clostridiales/crescimento & desenvolvimento , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/microbiologia , Aumento de Peso/efeitos dos fármacos , Xilanos/química , Xilanos/farmacologia
16.
Carbohydr Polym ; 255: 117389, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436218

RESUMO

A homogeneous polysaccharide named SHNP with apparent molecular weight of 8.4 kDa was purified from brown algae Sargassum henslowianum using ethanol precipitation, ion-exchange chromatography, and gel-filtration column chromatography. Structural analyses reveal that SHNP is completely composed of glucose, and its backbone consists of ß-D-(1→3)-Glcp with side chains comprising t-ß-D-Glcp attached at the O-6 position. Thus, SHNP is a laminarin-type polysaccharide. In vitro fermentation test results showed that SHNP was digested by gut microbiota; the pH value in the fecal culture of SHNP was significantly decreased; and total short-chain fatty acids, acetic, propionic and n-butyric acids were significantly increased. Furthermore, SHNP regulated the intestinal microbiota composition by stimulating the growth of species belonging to Enterobacteriaceae while depleting Haemophilus parainfluenzae and Gemmiger formicilis. Taken together, these results indicate that SHNP has the potential for regulating gut microbiota, but its specific role in the regulation requires to be further investigated.


Assuntos
Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal/fisiologia , Glucanos/farmacologia , Prebióticos/análise , Sargassum/química , Biotransformação , Clostridiales/efeitos dos fármacos , Clostridiales/crescimento & desenvolvimento , Clostridiales/isolamento & purificação , Clostridiales/patogenicidade , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/fisiologia , Fezes/química , Fezes/microbiologia , Fermentação , Glucanos/química , Glucanos/isolamento & purificação , Glucose/química , Haemophilus parainfluenzae/efeitos dos fármacos , Haemophilus parainfluenzae/crescimento & desenvolvimento , Haemophilus parainfluenzae/isolamento & purificação , Haemophilus parainfluenzae/patogenicidade , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Peso Molecular , Prebióticos/administração & dosagem
17.
Cell Host Microbe ; 29(1): 83-93.e3, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33385335

RESUMO

The immunopathogenesis of inflammatory bowel disease (IBD) has been attributed to a combination of host genetics and intestinal dysbiosis. Previous work in a small cohort of IBD patients suggested that pro-inflammatory bacterial taxa are highly coated with secretory immunoglobulin IgA. Using bacterial fluorescence-activated cell sorting coupled with 16S rRNA gene sequencing (IgA-SEQ), we profiled IgA coating of intestinal microbiota in a large cohort of IBD patients and identified bacteria associated with disease and treatment. Forty-three bacterial taxa displayed significantly higher IgA coating in IBD compared with controls, including 8 taxa exhibiting differential IgA coating but similar relative abundance. Patients treated with anti-TNF-α therapies exhibited dramatically altered microbiota-specific IgA responses compared with controls. Furthermore, increased IgA coating of Oscillospira was associated with a delay in time to surgery. These results demonstrate that investigating IgA responses to microbiota can uncover potential disease-modifying taxa and reveal improved biomarkers of clinical course in IBD.


Assuntos
Bactérias/imunologia , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Imunoglobulina A Secretora/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Adulto , Bactérias/crescimento & desenvolvimento , Clostridiales/crescimento & desenvolvimento , Clostridiales/imunologia , Estudos de Coortes , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/fisiopatologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Doença de Crohn/fisiopatologia , Progressão da Doença , Feminino , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/fisiopatologia , Masculino , Fator de Necrose Tumoral alfa/antagonistas & inibidores
18.
Benef Microbes ; 12(1): 69-83, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33191780

RESUMO

The establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOs) serve as specific substrates to shape the gut microbiota of the nursling. The well-orchestrated transition is important as an aberrant microbial composition and bacterial-derived metabolites are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMO-degrader, Bifidobacterium infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in the early life period including lactose and total human milk carbohydrates. Mono- and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates. A. caccae was not able to grow on these substrates except when grown in co-culture with B. infantis, leading to growth and concomitant butyrate production. Two levels of cross-feeding were observed, in which A. caccae utilised the liberated monosaccharides as well as lactate and acetate produced by B. infantis. This microbial cross-feeding points towards the key ecological role of bifidobacteria in providing substrates for other important species that will colonise the infant gut. The progressive shift of the gut microbiota composition that contributes to the gradual production of butyrate could be important for host-microbial crosstalk and gut maturation.


Assuntos
Bifidobacterium longum subspecies infantis/metabolismo , Clostridiales/metabolismo , Lactose/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Técnicas de Cocultura , Meios de Cultura/metabolismo , Humanos
19.
Gut Microbes ; 13(1): 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382950

RESUMO

Extibacter muris is a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid (DCA) via 7α-dehydroxylation. Although bile acids influence metabolic and inflammatory responses, few in vivo models exist for studying their metabolism and impact on the host. Mice were colonized from birth with the simplified community Oligo-MM12 with or without E. muris. As the metabolism of bile acids is known to affect lipid homeostasis, mice were fed either a low- or high-fat diet for eight weeks before sampling and analyses targeting the gut and liver. Multiple Oligo-MM12 strains were capable of deconjugating primary bile acids in vitro. E. muris produced DCA from CA either as pure compound or in mouse bile. This production was inducible by CA in vitro. Ursodeoxycholic, chenodeoxycholic, and ß-muricholic acid were not metabolized under the conditions tested. All gnotobiotic mice were stably colonized with E. muris, which showed higher relative abundances after HF diet feeding. The presence of E. muris had minor, diet-dependent effects on Oligo-MM12 communities. The secondary bile acids DCA and surprisingly LCA and their taurine conjugates were detected exclusively in E. muris-colonized mice. E. muris colonization did not influence body weight, white adipose tissue mass, liver histopathology, hepatic aspartate aminotransferase, or blood levels of cholesterol, insulin, and paralytic peptide (PP). However, proteomics revealed shifts in hepatic pathways involved in amino acid, glucose, lipid, energy, and drug metabolism in E. muris-colonized mice. Liver fatty acid composition was substantially altered by dietary fat but not by E. muris.In summary, E. muris stably colonized the gut of mice harboring a simplified community and produced secondary bile acids, which affected proteomes in the liver. This new gnotobiotic mouse model can now be used to study the pathophysiological role of secondary bile acids in vivo.


Assuntos
Ácidos e Sais Biliares/metabolismo , Clostridiales/metabolismo , Microbioma Gastrointestinal/fisiologia , Fígado/fisiologia , Animais , Biotransformação , Clostridiales/crescimento & desenvolvimento , Dieta Hiperlipídica , Vida Livre de Germes , Intestinos/microbiologia , Fígado/metabolismo , Camundongos
20.
NPJ Biofilms Microbiomes ; 6(1): 59, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268782

RESUMO

Planktonic cultures, of a rationally designed consortium, demonstrated emergent properties that exceeded the sums of monoculture properties, including a >200% increase in cellobiose catabolism, a >100% increase in glycerol catabolism, a >800% increase in ethanol production, and a >120% increase in biomass productivity. The consortium was designed to have a primary and secondary-resource specialist that used crossfeeding with a positive feedback mechanism, division of labor, and nutrient and energy transfer via necromass catabolism. The primary resource specialist was Clostridium phytofermentans (a.k.a. Lachnoclostridium phytofermentans), a cellulolytic, obligate anaerobe. The secondary-resource specialist was Escherichia coli, a versatile, facultative anaerobe, which can ferment glycerol and byproducts of cellobiose catabolism. The consortium also demonstrated emergent properties of enhanced biomass accumulation when grown as biofilms, which created high cell density communities with gradients of species along the vertical axis. Consortium biofilms were robust to oxic perturbations with E. coli consuming O2, creating an anoxic environment for C. phytofermentans. Anoxic/oxic cycling further enhanced biomass productivity of the biofilm consortium, increasing biomass accumulation ~250% over the sum of the monoculture biofilms. Consortium emergent properties were credited to several synergistic mechanisms. E. coli consumed inhibitory byproducts from cellobiose catabolism, driving higher C. phytofermentans growth and higher cellulolytic enzyme production, which in turn provided more substrate for E. coli. E. coli necromass enhanced C. phytofermentans growth while C. phytofermentans necromass aided E. coli growth via the release of peptides and amino acids, respectively. In aggregate, temporal cycling of necromass constituents increased flux of cellulose-derived resources through the consortium. The study establishes a consortia-based, bioprocessing strategy built on naturally occurring interactions for improved conversion of cellulose-derived sugars into bioproducts.


Assuntos
Celobiose/metabolismo , Clostridiales/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Consórcios Microbianos , Plâncton/microbiologia , Aminoácidos/metabolismo , Biocombustíveis , Biomassa , Clostridiales/metabolismo , Escherichia coli/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...